
CS 262 Lecture 6: Functions

Overview of Lecture 6

Functions
Function vs method
How functions work in C
Call by value

Pointers !!
Building on what we saw with arrays last class
A little more info on what exactly pointers are
Lots of live demos

Functions again
Call by reference

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

Function Basics

Functions are blocks of code that perform a specific task that can be
executed when called
What Do Functions Do?

Encapsulate logic
Allow reuse of code
Makes code more readable

How are Functions Used?
A function is called with 0 or more arguments
A function will return at most one piece of data, but can return none (void)

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

Functions Vs. Methods

C does not have methods because doesn’t have classes
 The structure and purpose of methods and functions are very similar
 The difference mainly comes down whether it belongs to an object or class

(method), or exists independently within a program (function)

Attribute Methods (OOP) Functions

Belongs To A class or object Independent – belongs to a program

Call Syntax object.method function_name(arguments)

Encapsulation Tied to the state of an
object

Standalone – operates on given
arguments

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

Anatomy Of A Function

int multiply_numbers(int x, int y) {

 // function body

 int result = x * y;

 return result;

}

Return
Type

Function
Name

First
Parameter

Second
Parameter

Return
Statement

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

Function Terminology

A Function Prototype is a declaration of a function that gives
info about its name, return type, and parameters, but without
the actual body or implementation of the function

It informs the compiler about how the function should be called
Prototypes are placed at the beginning of the program or in a header
(.h) file

Parameters are variables declared in the function definition
that accept the arguments passed to the function when it is
called

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

Function Rules - Prototype

Function Declarations (Prototypes)
This is just the function header:

It gives the system all the info needed (return type, number of
arguments, argument type, function name) needed to know if it is
being called correctly

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

int multiply_numbers(int x, int y);

Return
Type

Function
Name

First
Parameter

Second
Parameter

“Random” numbers

Function Rules - Scope

Scope determines where a variable is accessible
Local scope: A variable declared within a function is only accessible
within that function

Global scope: A variable declared outside any function is accessible
everywhere in the program

Block scope: A variable declared in a block {} like in a loop is only
accessible within that block

Variables declared in higher scope are accessible in lower scope

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

Function Rules – No Overloading

Function names all must be unique
Unlike Java, we can’t do overloading

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

int hi() {

 printf(“hello\n”);

}

int hi(int var1) {

 printf(“%d\n”, var1);

}

int hi() {

 printf(“hello\n”);

}

int hello(int var1) {

 printf(“%d\n”, var1);

}

“Random” numbers

Functions - Call By Value

Call By Value
The parameters are received as copies of the actual arguments, and the function
only manipulates the copies of those values

int main() {

 int num = 5;

 int new_num = modify(num);

 printf(“num = %d\n”, num);

 printf(“new_num = %d\n”, new_num);

 return 0;

}

int modify(int x) {

 x++;

 return x;

}

A copy of num is
made when the

function is called

The function
receives the

copy

The function
increments

the copy

The result
is returned

What do
these 2 lines

print out?

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

Call By Value – What’s In The Memory?
We Are Here

num new_num

0x100 0x104 0x108

x

? ? ?

Variable Name

main’s local variables

Memory Address

Variable Value

modified’s
locals

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

int main() {

 int num = 5;

 int new_num = modify(num);

 printf(“num = %d\n”, num);

 printf(“new_num = %d\n”, new_num);

 return 0;

}

int modify(int x) {

 x++;

 return x;

}

Call By Value – What’s In The Memory?

num new_num

0x100 0x104 0x108

x

5 ? ?

Variable Name

main’s local variables

Memory Address

Variable Value

modified’s
locals

We Are Here

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

int main() {

 int num = 5;

 int new_num = modify(num);

 printf(“num = %d\n”, num);

 printf(“new_num = %d\n”, new_num);

 return 0;

}

int modify(int x) {

 x++;

 return x;

}

“Random” numbers

Call By Value – What’s In The Memory?

num new_num

0x100 0x104 0x108

x

5 ? 5

Variable Name

main’s local variables

Memory Address

Variable Value

modified’s
locals

We Are Here

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

We Are Here

“Random” numbers

int main() {

 int num = 5;

 int new_num = modify(num);

 printf(“num = %d\n”, num);

 printf(“new_num = %d\n”, new_num);

 return 0;

}

int modify(int x) {

 x++;

 return x;

}

Call By Value – What’s In The Memory?

num new_num

0x100 0x104 0x108

x

5 ? 6

Variable Name

main’s local variables

Memory Address

Variable Value

modified’s
locals

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

We Are Here

We Are Here

“Random” numbers

int main() {

 int num = 5;

 int new_num = modify(num);

 printf(“num = %d\n”, num);

 printf(“new_num = %d\n”, new_num);

 return 0;

}

int modify(int x) {

 x++;

 return x;

}

Call By Value – What’s In The Memory?

num new_num

0x100 0x104 0x108

x

5 ? 6

Variable Name

main’s local variables

Memory Address

Variable Value

modified’s
locals

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

We Are Here

We Are Here

“Random” numbers

int main() {

 int num = 5;

 int new_num = modify(num);

 printf(“num = %d\n”, num);

 printf(“new_num = %d\n”, new_num);

 return 0;

}

int modify(int x) {

 x++;

 return x;

}

Call By Value – What’s In The Memory?

num new_num

0x100 0x104 0x108

x

5 6 6

Variable Name

main’s local variables

Memory Address

Variable Value

modified’s
locals

We Are Here

Memory for x is
released or

marked available

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

int main() {

 int num = 5;

 int new_num = modify(num);

 printf(“num = %d\n”, num);

 printf(“new_num = %d\n”, new_num);

 return 0;

}

int modify(int x) {

 x++;

 return x;

}

Call By Value – What’s In The Memory?

num new_num

0x100 0x104 0x108

x

5 6 6

Variable Name

main’s local variables

Memory Address

Variable Value

modified’s
locals

We Are Here

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

5

Terminal

“Random” numbers

int main() {

 int num = 5;

 int new_num = modify(num);

 printf(“num = %d\n”, num);

 printf(“new_num = %d\n”, new_num);

 return 0;

}

int modify(int x) {

 x++;

 return x;

}

Call By Value – What’s In The Memory?

num new_num

0x100 0x104 0x108

x

5 6 6

Variable Name

main’s local variables

Memory Address

Variable Value

modified’s
locals

We Are Here

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

6

Terminal

“Random” numbers

int main() {

 int num = 5;

 int new_num = modify(num);

 printf(“num = %d\n”, num);

 printf(“new_num = %d\n”, new_num);

 return 0;

}

int modify(int x) {

 x++;

 return x;

}

Pointer Basics

A pointer is a variable containing the address of another
variable

int num = 5;

int num2 = 10;

int *ptr = NULL;

int num3 = 15;

// ptr = #

num num2 int *ptr

0x100 0x104 0x108 0x110

num3

In modern systems,
pointers are usually

either 4 or 8 bytes

... 5 10 NULL 15 ...

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

Pointer Basics

A pointer is a variable containing the address of another
variable

num num2 int *ptr

0x100 0x104 0x108 0x110

num3

... 5 10 0x100 15 ...

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

int num = 5;

int num2 = 10;

int *ptr = NULL;

int num3 = 15;

ptr = #

“Random” numbers

Pointer Basics

ptr++;

num num2 int *ptr

0x100 0x104 0x108 0x110

num3

... 5 10 0x104 15 ...

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

num num2 int *ptr

0x100 0x104 0x108 0x110

num3

... 5 10 0x100 15 ...ptr = #

“Random” numbers

Functions - Call By Reference

Call By Reference
Rather than passing copies of the variables to a function, call by
reference passes the memory address of a variable

Guess what – we’ve already done this with sscanf

&val is the
memory address
of the variable val

sscanf(buffer, “%d”, &val);

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

Functions - Call By Reference

&num is the
memory

address of num

Call By Reference
The parameters are received as references to the actual arguments, allowing the
function to directly modify the original values

*num means “the
value at the address

stored in num”

(*num)++

increments the
value stored at the

address by 1

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

int main() {

 int num = 5;

 modify(&num);

 printf(“%d\n”, num);

 return 0;

}

void modify(int *num) {

 (*num)++;

}

“Random” numbers

Functions – Working With Arrays

int main() {

 int arr[] = {1, 2, 3, 4, 5};

 int size = sizeof(arr) / sizeof(arr[0]);

 increment_array(arr, size);

 return 0;

}

void increment_array(int arr[], int size) {

 arr[0]++;

}

What’s going
on here?

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics “Random” numbers

Pseudorandom Number Generation

returns the next ‘random’
number between 1 and
some value that varies
based on the system

Random Numbers
Computers aren’t capable of generating truly random numbers

Instead, they generate what we call ‘pseudo-random’ numbers

pseudo-random number generators do an excellent job simulating true
randomness

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

int rand(void)

“Random” numbers

Pseudorandom Number Generation

Generating Random Numbers

What if I want random numbers within a range?

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

int main() {

 for(int i=0; i<10; i++) {

 int r = rand();

 printf(“%d\n”, r);

 }

}

prints 10 random
(pseudo-random)

integers

“Random” numbers

Pseudorandom Number Generation

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

int main() {

 for(int i=0; i<10; i++) {

 int r = (rand() % 100);

 printf(“%d\n”, r);

 }

}

We can use modulus to generate random numbers within a
specified range

int main() {

 for(int i=0; i<10; i++) {

 int r = (rand() % 100) + 1;

 printf(“%d\n”, r);

 }

}

Prints 10 ‘random’ numbers
between 0 and 99

Prints 10 ‘random’ numbers
between 1 and 100

“Random” numbers

Pseudorandom Number Generation

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

int main() {

 int seed = 25;

 srand(seed);

 for(int i=0; i<10; i++) {

 int r = (rand() % 100);

 printf(“%d\n”, r);

 }

}

The Seed State
This is the number that initializes the PRNG algorithm

This number is only specified once at the start, using srand()

What do you think
happens if I put
srand(seed) in

the loop?

“Random” numbers

Pseudorandom Number Generation

Logistics Call By Value Pointer Basics Call By ReferenceFunction Basics

int main() {

srand(time(NULL)); // seed with current time

printf(“roll = %d\n”, roll_dice());

}

int roll_dice() {

 return (rand() % 6) + 1;

}

The Seed State
In practice, the seed state is often chosen to be the current time

“Random” numbers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

