CS 262 Lecture 6: Functions

(G V, | GEORGE MASON
UNIVERSITY.

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
o

Overview of Lecture 6

Functions
Function vs method
How functions work in C
Call by value

Pointers !!
Building on what we saw with arrays last class
A little more info on what exactly pointers are
Lots of live demos

Functions again
Call by reference

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers

Function Basics

Functions are blocks of code that perform a specific task that can be
executed when called

What Do Functions Do?
Encapsulate logic
Allow reuse of code
Makes code more readable

How are Functions Used?

A function is called with 0 or more arguments
A function will return at most one piece of data, but can return none (void)

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
o

Functions Vs. Methods

C does not have methods because doesn’t have classes
The structure and purpose of methods and functions are very similar

The difference mainly comes down whether it belongs to an object or class
(method), or exists independently within a program (function)

Atribute | Methods (00P) | Functions

Belongs To A class or object Independent — belongs to a program
Call Syntax object.method function_name(arguments)

Encapsulation Tiedtothe state ofan Standalone - operates on given
object arguments

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers

Anatomy Of A Function

Return Function
Type Name

int multiply numbers(int x, int y) {
// function body
int result = x * y;
return result;

y L— |

First Second
Parameter Parameter

Return
Statement

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
o

Function Terminology

A Function Prototype is a declaration of a function that gives
Info about its name, return type, and parameters, but without
the actual body or implementation of the function
It informs the compiler about how the function should be called
Prototypes are placed at the beginning of the program or in a header
(.h) file
Parameters are variables declared in the function definition

that accept the arguments passed to the function when itis
called

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
[]

Function Rules - Prototype

Function Declarations (Prototypes)
This is just the function header:

Return Function First Second

Type NEIG Parameter Parameter

int multiply numbers(int x, int y);

It gives the system all the info needed (return type, number of
arguments, argument type, function name) needed to know if it is
being called correctly

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
[

Function Rules - Scope

Scope determines where a variable is accessible

Local scope: A variable declared within a function is only accessible
within that function

Global scope: A variable declared outside any function is accessible
everywhere in the program

Block scope: A variable declared in a block { } like ina loop is only
accessible within that block

Variables declared in higher scope are accessible in lower scope

Logistics

Function Basics

Call By Value
o

Pointer Basics

Call By Reference

“Random” numbers

Function Rules — No Overloading

Function names all must be unique

N

Unlike Java, we can’t do overloading

1 hi() {

printf (“hello\n”
}
int hi (3 var {

pLifitf (“%d\n”,

4

1)

int hi() {
printf (“hello\n”) ;

}

int hello(int wvarl) {
printf (“$d\n”, wvarl);
}

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers

Functions - Call By Value

Call By Value
The parameters are received as copies of the actual arguments, and the function

only manipulates the copies of those values A 1 6 AT T
made when the

int main() { function is called

int num = 5;

int new num = modify (num);

printf (“num = $d\n”, num) ;

these 2 lines printf (“new num = %d\n”, new num) ;
print out? return O;

}

What do

) int modify(int x) {
The function
xX++;

increments

return x;

the copy

The function

The result receives the

is returned copy

Call By Value Pointer Basics Call By Reference “Random” numbers

Call By Value — What’s In The Memory?
int main®) {

int new num = modify (num) ;
printf (“num = %d\n”, num);
printf (“new num = %d\n”, new_num);

return 0O;

Logistics Function Basics

}

int modify(int x) {

X++;
return x;
}
4 - localvariables [] MOdified’s
main’s local variables locals
Variable Name num new_num X
Variable Value 2 ” ”
Memory Address 0x100 0x104 0x108

Call By Value Pointer Basics Call By Reference “Random” numbers

Call By Value — What’s In The Memory?

Logistics Function Basics

int main() {

int num = 5;
int new num = modify (num) ;

printf (“num = %d\n”, num);

printf (“new num = %d\n”, new_num);

return 0O;

}

int modify(int x) {

X++;
return x;
}
4 . , 7] modified’s (]
main’s local variables locals
Variable Name num new_nhum X
Variable Value 5 L) ”
Memory Address | 0x100 0x104 0x108

Pointer Basics Call By Reference “Random” numbers

Logistics Function Basics Call By Value

Call By Value — What’s In The Memory?

int main() {
int num = 5;
int new num = modify (num) ;

printf (“num = %d\n”, num);

printf (“new num = %d\n”, new_num);

return 0O;

}

int modify(int x) {

We Are Here
X++;
return x;
}
4 . , 7] modified’s (]
main’s local variables locals
Variable Name num new_nhum X
Variable Value 5 s 5
Memory Address | 0x100 0x104 | 0x108

Pointer Basics Call By Reference “Random” numbers

Logistics Function Basics Call By Value

Call By Value — What’s In The Memory?

int main() {
int num = 5;
int new num = modify (num) ;
printf (“num = %d\n”, num);
printf (“new num = %d\n”, new_num);

return 0O;

We Are Here

}

int modify(int x) {

We Are Here X++;
return x;
}
4 . , 7] modified’s (]
main’s local variables locals
Variable Name num new_nhum X
Variable Value 5 s 6
Memory Address | 0x100 0x104 | 0x108

Pointer Basics Call By Reference “Random” numbers

Logistics Function Basics Call By Value

Call By Value — What’s In The Memory?

int main() {

int num = 5;

int new num = modify (num) ;
printf (“num = %d\n”, num);
printf (“new num = %d\n”, new_num);

return 0O;

We Are Here

int modify(int x) {

Vo Arotore 2
o Aotiore 2

X++;
We Are Here return x;
}
4 . , 7] modified’s (]
main’s local variables locals
Variable Name num new_nhum X
Variable Value 5 s 6
Memory Address | 0x100 0x104 | 0x108

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers

Call By Value — What’s In The Memory?

int main() {
int num = 5;

int new num = modify (num) ;
printf (“num = %d\n”, num);
= %d\n”, new_num);

printf (“new num =
return O;

}

int modify(int x) {

X++;
return x;
}
/] . , ”| modified’s
main’s local variables locals M ;)
emory for x is
Variable Name num new_num X marrileeo?zsgifarble
Variable Value 5 6
Memory Address | 0x100 0x104 | 0x108

Call By Reference “Random” numbers

Call By Value Pointer Basics

Logistics Function Basics

Call By Value — What’s In The Memory?

int main() {
int num = 5;
int new num = modify (num) ;

printf (“num = %d\n”, num);
printf (“new num = %d\n”, new_num);

return 0O;

} Terminal
X++;
return x;
}
/| , , 1 modified’s (]
main’s local variables locals
Variable Name num new_num X
Variable Value 5 6
Memory Address | 0x100 0x104 | 0x108

Call By Reference “Random” numbers

Call By Value Pointer Basics

Logistics Function Basics

Call By Value — What’s In The Memory?

int main() {
int num = 5;
int new num = modify (num) ;
printf (“num = %d\n”, num);

printf (“new num = %d\n”, new_num);
return O;

} Terminal

int. modify (int) | s

X++;
return x;
}
4 . , 7] modified’s (]
main’s local variables locals
Variable Name num new_nhum X
Variable Value 5 6
Memory Address | 0x100 0x104 | 0x108

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers

Pointer Basics

A pointer is a variable containing the address of another

variable

int num = 5;

int num2 = 10;

int *ptr = NULL;

int num3 = 15; In modern systems,

// ptr = # pointers are usually

either 4 or 8 bytes

num num2 int *ptr
5 10 NULL 15

0x100 0x104 0x108 0x110

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
o

Pointer Basics

A pointer is a variable containing the address of another

variable

int num = 5;

int num2 = 10;

int *ptr = NULL;

int num3 = 15;

ptr = #
nu,n/nummt*ptr nums3
5 10 0x100 15

0x100 0x104 0x108 0x110

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
o

Pointer Basics

nuMptr nums3

ptr = # 5 10 0x100 15
0x100 0x104 0x108 0x110
num nuﬂptr nums3
e 5 10 0x104 15

0x100 0x104 0x108 0x110

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
o

Functions - Call By Reference

Call By Reference

Rather than passing copies of the variables to a function, call by
reference passes the memory address of a variable

Guess what — we’ve already done this with sscanf

sscanf (buffer, “%d4d”, &val);

&val isthe

memory address
of the variable val

Call By Value Pointer Basics Call By Reference “Random” numbers

Logistics Function Basics

Functions - Call By Reference

Call By Reference
The parameters are received as references to the actual arguments, allowing the

function to directly modify the original values

.) &num isthe
int main() { memory
int num = 5; address of num
modify (&num) ;
printf (“$d\n”, num);
return O;

}

(*num) ++ void modify (int *num) {
increments the (*num) ++;

value stored at the ’

*num means “the

value at the address

address by 1
stored in num”

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
o

Functions — Working With Arrays

int main() {
int arr[] = {1, 2, 3, 4, 5};
int size = sizeof(arr) / sizeof(arr[0]) ;
increment array(arr, size);
return O;

What’s going

on here?

void increment array(int arr[], int size) ({
arr[0]++;
}

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
o

Pseudorandom Number Generation

Random Numbers
Computers aren’t capable of generating truly random numbers

Instead, they generate what we call ‘pseudo-random’ numbers

pseudo-random number generators do an excellent job simulating true
randomness

returns the next ‘random’
number between 1 and int rand(void)

some value that varies
based on the system

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
o

Pseudorandom Number Generation

Generating Random Numbers

int main() ({

for (int i=0; i<10; i++) { prints 10 random

int r = rand(); (pseudo-random)
printf (“%d\n”, r); integers

What if | want random numbers within a range?

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
[

Pseudorandom Number Generation

We can use modulus to generate random numbers within a
specified range

Prints 10 ‘random’ numbers Prints 10 ‘random’ numbers
between 0 and 99 between 1 and 100
int main() { int main() {
for(int i1=0; i<10; i++) { for (int i1=0; i<10,; i++) {
int r = (rand() % 100) ; int r = (rand() % 100) + 1;
printf (“%d\n”, r); printf (“%d\n”, r);
} }
} }

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
[]

Pseudorandom Number Generation

The Seed State
This is the number that initializes the PRNG algorithm

This number is only specified once at the start, using srand ()

int main() {

int seed = 25; What do you think

srand (seed) ; happens if | put

for(int i=0; i<10; i++) { srand (seed) in
int r = (rand() % 100); the loop?
printf (“%d\n”, r);

Logistics Function Basics Call By Value Pointer Basics Call By Reference “Random” numbers
[]

Pseudorandom Number Generation

The Seed State
In practice, the seed state is often chosen to be the current time

int main() {

srand (time (NULL)); // seed with current time
printf (“roll = %d\n”, roll dice()):

}

int roll dice() {
return (rand() % 6) + 1;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

